Designing a Road Traffic Model for the Cross-sectoral Analysis of Future National Infrastructure

Milan Lovrić, Simon Blainey, John Preston

University of Southampton

CTS Seminar, UCL, 28 March 2018
ITRC (Infrastructure Transitions Research Consortium):

- Interdependent infrastructure systems (transport, energy, water, waste, digital communications).
- Used by the UK’s NIC to inform its National Infrastructure Assessment.
Aspirations for MISTRAL (NISMOD v2)

- Integration of **capacity, demand** and **risk** modelling frameworks.
- System model with packages of **policy interventions**:
 - New road development.
 - New bus/rail services (e.g. HS2).
 - New technology/modes (e.g. autonomous vehicles).
 - Electrification of vehicles.
 - Congestion charging.
- **Global connectivity**: integration with international demand/supply nodes at model boundaries.
- **Risk and resilience**: identification of most vulnerable points on networks.
Fast-track Case Study (Highway Demand Model)

- Transport model predicts highway demand (OD matrix):
 - For passenger and freight vehicles.
 - Elasticity-based simulation.
 - Network assignment to major road network.
 - Implemented in Java (GeoTools).

- Fast-track case study:
 - Four local authority districts (LADs).
 - Three interventions:
 • Road expansion
 • Road development
 • Vehicle electrification
 - Cross-sectoral interdependencies:
 • Input: electricity price (per kWh).
 • Output: total electricity consumption.
Passenger demand (passenger vehicle flows) are predicted using the following formula:

\[F_{ijy} = F_{ijy-1} \left(\frac{P_{iy} + P_{jy}}{P_{iy-1} + P_{jy-1}} \right)^{\eta_P} \left(\frac{I_{iy} + I_{jy}}{I_{iy-1} + I_{jy-1}} \right)^{\eta_I} \left(\frac{T_{ijy}}{T_{ijy-1}} \right)^{\eta_T} \left(\frac{C_{ijy}}{C_{ijy-1}} \right)^{\eta_C} \]

Where:

- \(F_{ijy} \) is the flow between origin zone \(i \) and destination zone \(j \) in year \(y \).
- \(P_{iy} \) is the population in zone \(i \) in year \(y \).
- \(I_{iy} \) is the GVA per head in zone \(i \) in year \(y \).
- \(T_{ijy} \) is average travel time between zone \(i \) and zone \(j \).
- \(C_{ijy} \) is average travel cost between zone \(i \) and zone \(j \).
- Elasticity parameters are taken from previous studies.

\[\eta_P = 1.0 \]
\[\eta_I = 0.63 \]
\[\eta_T = -0.41 \]
\[\eta_C = -0.215 \]
Freight Vehicle Demand Model

- **Freight demand** (freight vehicle flows) are predicted using the following formula:

\[
F_{ijy} = F_{ijy-1} \left(\frac{P_{iy} + P_{jy}}{P_{iy-1} + P_{jy-1}} \right)^{\eta_P} \left(\frac{I_{iy} + I_{jy}}{I_{iy-1} + I_{jy-1}} \right)^{\eta_I} \left(\frac{T_{ijy}}{T_{ijy-1}} \right)^{\eta_T} \left(\frac{C_{ijy}}{C_{ijy-1}} \right)^{\eta_C}
\]

- Freight model uses different elasticity values and different travel time/cost matrices.
- Three types or freight vehicles: **artics**, **rigids** and **vans**.
- Freight zones can be: **LADs**, major **distribution centres**, **airports** and **seaports**.
- Adopted from the DfT’s *Base-Year Freight Matrices* study (2006).
• **Passenger vehicle demand:**

<table>
<thead>
<tr>
<th>ORIGIN LAD</th>
<th>DESTINATION LAD</th>
<th>PRODUCTIONS</th>
<th>ATTRACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>400</td>
<td>260 400 500 800</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>460</td>
<td>260 400 500 802</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>400</td>
<td>260 400 500 802</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>700</td>
<td>260 400 500 800</td>
</tr>
</tbody>
</table>

- **Scaling to productions**
- **Scaling to attractions**
- **Scaling to NTS OTLD**

• **Alternative approach:** OD matrix estimation with network assignment and AADF traffic counts.

• **Freight vehicle demand:**
 - **DfT’s BYFM study (2006) -> scaling to 2015.**
 - **Three matrices (artics, rigids, vans).**
 - **Point ‘zones’: airports, seaports and major distribution centres have been mapped to their nearest node networks.**
• Origin and destination zones (LADs) are relatively large compared to the road network.

• Finer census output areas with their population size are used for the node choice.
• Population weighted centroids are assigned to the nearest neighbour nodes.

• Nodes are then ranked based on the gravitating population.
Model Flow (Network Assignment)

- For each OD (LAD) pair with a non-zero flow
 - For each trip:

 ![Diagram of model flow](image)

 - Origin node choice
 - Vehicle engine choice
 - Route choice
 - Destination node choice
 - Time of day choice

![Engine Type Fractions](image)

- Engine Type Fractions:
 - PETROL = 40%
 - HYDROGEN = 2%
 - DIESEL = 30%
 - ELECTRICITY = 25%
 - LPG = 10%

Daily trip distribution from NTS
Network Assignment (Routing)
• AADF UK major road network (A roads and motorways).
• OD flow is assigned to the least-cost path between origin and destination node.
• Fastest path (based on congested link travel times, using a heuristic search algorithm A*).
• Disadvantages:
 • All drivers choose the same optimal path.
 • Routing algorithm is costly.
• Alternative implementation: route-choice model and off-line route set generation.
Network Assignment v2 (Route Set Generation)

- **Algorithms** (e.g. k-shortest path, link elimination, random perturbation etc.)
- **Random link elimination:**
 1. Find the fastest path (A*).
 2. Eliminate a random link within that path.
 3. Find the next fastest path.
 4. If new, add to the route set.
 5. Repeat from 2 until limit reached.
- **Limit:** 10 RLE attempts, max. 5 routes per route set.
• **Route-choice model**: path-size logit

• Utility of a route is a function of:
 • Time (link travel times + intersection delay)
 • Distance (link lengths)
 • Cost (fuel cost + congestion charge)
 • Number of intersections

\[V_{in} = \beta_1 \text{Time} + \beta_2 \text{Distance} + \beta_3 \text{Cost} + \beta_4 \text{NoInt} \]

• Variables depend on time of day and vehicle fuel efficiency.

• Path size (PS) is a correction term for overlapping alternatives.

• The probability of driver \(n \) choosing path \(i \):

\[
P(i|C_n) = \frac{e^{V_{in} + \ln PS_{in}}}{\sum_{j\in C_n} e^{V_{jn} + \ln PS_{jn}}}
\]
• **Link travel times** (for each hour of the day) are updated as (BPR):

\[
T_c = T_0 \left[1 + \alpha \left(\frac{V}{C} \right)^\beta \right],
\]

- \(T_c \) is a congested travel time on a link,
- \(T_0 \) is a free-flow travel time on a link,
- \(V \) is hourly volume [PCU/ lane/ hour],
- \(C \) is max. road capacity [PCU/ lane/ hour],
- \(\alpha, \beta \) are parameters.

• **Alternative specification using fundamental diagrams of traffic flow** (FORGE, DfT).
Skim Matrices Update

- Contain inter- and intra-zonal travel times and travel costs.
- Calculated after network assignment as average travel time/cost across all the chosen routes for all the trips.
- Feeds back into the elasticity-based simulation:

\[
\left(\frac{T_{ijy}}{T_{ijy-1}} \right)^{\eta_T} \left(\frac{C_{ijy}}{C_{ijy-1}} \right)^{\eta_C}
\]
Model Flow (Demand Prediction)

Network assignment (base year)

Policy interventions (predicted year)

Demand prediction 1 (population and GVA)

Demand prediction 2 (time and cost)

Network assignment (predicted year)

OD matrix

T & C

KPIs

Road expansion

New road development

Vehicle electrification

Vehicle automation

Congestion charging

\[F_{ijy} = F_{ijy-1} \left(\frac{P_{ij}}{P_{ij-1}} \right) \left(\frac{I_{ij}}{I_{ij-1}} \right) \left(\frac{P_{ij}}{P_{ij-1}} \right) \left(\frac{T_{ij}}{T_{ij-1}} \right) \left(\frac{C_{ij}}{C_{ij-1}} \right) \]

\[F_{ijy} = F_{ijy-1} \left(\frac{P_{ij}}{P_{ij-1}} \right)^{\eta_p} \left(\frac{I_{ij}}{I_{ij-1}} \right)^{\eta_l} \left(\frac{P_{ij}}{P_{ij-1}} \right)^{\eta_p} \left(\frac{T_{ij}}{T_{ij-1}} \right)^{\eta_T} \left(\frac{C_{ij}}{C_{ij-1}} \right)^{\eta_C} \]
• After the network assignment of passenger and freight vehicle flows, the capacity utilisation of the road network can be assessed.

• Capacity utilisation = actual flow / max. flow

• Capacity “pinch points” can be identified – candidates for policy interventions.
• Road expansion
 = building new lanes.
• Road development
 = building new links.
• Expected impact:
 – Lower capacity utilisation and decreased travel times.
 – Somewhat increased demand due to lower travel times (see the elasticity-based model).
Predicted road capacity utilisation after policy interventions:

- **(a) No intervention**
 - Bigger reduction in capacity utilisation
 - Localised effect

- **(b) Road expansion**
 - Smaller reduction in capacity utilisation
 - Spread out effect

- **(c) Road development**
• Congestion charging policy:
 – Road links on which the policy applies.
 – Pricing structure table
 \[[\text{Vehicle Type} \times \text{Time of Day (hours)}]\].

• Examples:

Itchen Bridge toll:

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>0 – 7</th>
<th>7 – 11</th>
<th>11 – 16</th>
<th>16 – 20</th>
<th>20 – 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR</td>
<td>£0.50</td>
<td>£0.60</td>
<td>£0.50</td>
<td>£0.60</td>
<td>£0.50</td>
</tr>
<tr>
<td>VAN</td>
<td>£1.20</td>
<td>£1.20</td>
<td>£1.20</td>
<td>£1.20</td>
<td>£1.20</td>
</tr>
<tr>
<td>RIGID</td>
<td>£25.00</td>
<td>£25.00</td>
<td>£25.00</td>
<td>£25.00</td>
<td>£25.00</td>
</tr>
<tr>
<td>ARTIC</td>
<td>£25.00</td>
<td>£25.00</td>
<td>£25.00</td>
<td>£25.00</td>
<td>£25.00</td>
</tr>
</tbody>
</table>

London congestion charge zone:

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>0 – 7</th>
<th>7 – 18</th>
<th>18 – 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR</td>
<td>£0.00</td>
<td>£11.50</td>
<td>£0.00</td>
</tr>
<tr>
<td>VAN</td>
<td>£0.00</td>
<td>£11.50</td>
<td>£0.00</td>
</tr>
<tr>
<td>RIGID</td>
<td>£0.00</td>
<td>£11.50</td>
<td>£0.00</td>
</tr>
<tr>
<td>ARTIC</td>
<td>£0.00</td>
<td>£11.50</td>
<td>£0.00</td>
</tr>
</tbody>
</table>
(a) Fuel type market shares
(b) Predicted car fuel consumptions

- Increased total electricity consumption \rightarrow energy demand model.
- Reduced environmental impact.
Cross-sectoral Interdependencies

- TR – transport
- E – energy
- DC – digital communications
- SW – solid waste
- W – water

Interdependencies between transport and the energy sector:
- Energy supply → electricity unit price (kWh) → Transport
- Transport → total electricity consumption → Energy demand

SMIF (Simulation Integration Modelling Framework).
• **Major road** network for Great Britain (A roads and motorways).
• Adding **ferry lines**.
• **OD matrix estimation** (TEMPRO trip end data, trip length distr., AADF count data).
• **Calibration** with traffic counts.
• **Code optimization**.
• **Offline route set generation**.
• IRIDIS4 compute cluster of the University of Southampton.

• **Limit**: inter-zonal trips consider only top N nodes.

• **Passenger** vehicle OD matrix: 13,450,717 routes for 2,939,471 node pairs.

• **Freight** vehicle OD matrix: 12,183,615 routes for 2,604,317 node pairs.

• **Challenge**: new road development intervention.
Road Disruption

- Road disruption (e.g. due to flooding) is inputted as a list of blocked road links.
- Before network assignment:
 1. Blocked road links are removed from the road network (graph).
 2. All routes that have at least one link blocked are removed from the route set.
- Removed routes are remembered so that they can be restored.
Other Major Tasks

- National rail model.
- Airport and seaport model.
- Global interconnectivity.
- Cross-sectoral interdependencies. (T + E + DC + SW + WS)
- Integration with risk & resilience models.
- Environmental impacts.
- Validation and calibration.
Challenges

• Data (lack of, quality)
 — AADF road network (topological errors, no lane data).
 — OD matrices (no data or outdated).
 — England/Wales/Scotland (no workplace zone data for Scotland).
 — AADF count data (no accuracy).

• Optimising simulation run-times and memory use
 — Scope (multi-scale: local, national, global).
 — Policy interventions (flexible, spatially and temporally disaggregated model).
 — Cross-sectoral analysis (running together with other sectoral models).
 — May require supercomputing facilities.
Acknowledgments

The authors acknowledge funding of the work described here by the EPSRC (Engineering and Physical Sciences Research Council of the UK) under Program Grants EP/I01344X/1 and EP/N017064/1 as part of the Infrastructure Transitions Research Consortium (ITRC, www.itrc.org.uk) and MISTRAL projects. We also thank all ITRC colleagues for their continuing help in developing and adapting the modelling approach presented here. This presentation contains Ordnance Survey data ©Crown copyright and database right (2017).

Further Information

www.itrc.org.uk
M.Lovric@soton.ac.uk
S.P.Blainey@soton.ac.uk